If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+10=12
We move all terms to the left:
7x^2+10-(12)=0
We add all the numbers together, and all the variables
7x^2-2=0
a = 7; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·7·(-2)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{14}}{2*7}=\frac{0-2\sqrt{14}}{14} =-\frac{2\sqrt{14}}{14} =-\frac{\sqrt{14}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{14}}{2*7}=\frac{0+2\sqrt{14}}{14} =\frac{2\sqrt{14}}{14} =\frac{\sqrt{14}}{7} $
| 3m-2m+4m=15 | | -133=-10x+7 | | 7(x+4)-3(2-x)=0 | | 5r+18=78 | | -15x-45+8x=81 | | F(x)=6x^2+13x-9 | | 2-13/x+20/x^2=0 | | 2x^2+2x+10=5 | | 2x(+7)=24 | | x/5+6=22 | | 2.8-5=x | | -5=s+3 | | -7x-2+6x=-8x-8 | | 3(x-2)=4(x-10) | | T^2-10t-6=5 | | 5k+6-k-9=-2k+6+3k-3 | | (v+2)^2-40=0 | | (D^3-3D^2-3D+1)y=0 | | -6p-6=-14+2p | | 13-b=17 | | 6x2-9x=12 | | 10-x=43 | | 4x+8=2x+6-8x | | 15x2(-+9x)=0 | | (x+10)^3=0 | | 0=-5/4x+1.5 | | 2n+1=-11-2n | | 1/x^2-4x+4=3/x-2 | | 1/6(6/5x+6)=9 | | 3b+8=-4+b | | (k-3)/5=10 | | 4(-3+2r)=8(r+6) |